Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Molecules ; 27(8)2022 Apr 15.
Article in English | MEDLINE | ID: covidwho-1810043

ABSTRACT

In the field of drug discovery, the nitrile group is well represented among drugs and biologically active compounds. It can form both non-covalent and covalent interactions with diverse biological targets, and it is amenable as an electrophilic warhead for covalent inhibition. The main advantage of the nitrile group as a warhead is mainly due to its milder electrophilic character relative to other more reactive groups (e.g., -CHO), reducing the possibility of unwanted reactions that would hinder the development of safe drugs, coupled to the ease of installation through different synthetic approaches. The covalent inhibition is a well-assessed design approach for serine, threonine, and cysteine protease inhibitors. The mechanism of hydrolysis of these enzymes involves the formation of a covalent acyl intermediate, and this mechanism can be exploited by introducing electrophilic warheads in order to mimic this covalent intermediate. Due to the relevant role played by the cysteine protease in the survival and replication of infective agents, spanning from viruses to protozoan parasites, we will review the most relevant and recent examples of protease inhibitors presenting a nitrile group that have been introduced to form or to facilitate the formation of a covalent bond with the catalytic cysteine active site residue.


Subject(s)
Cysteine Proteases , Parasitic Diseases , Cysteine/chemistry , Cysteine Proteinase Inhibitors/pharmacology , Drug Discovery , Humans , Nitriles/pharmacology
2.
Russ Chem Bull ; 70(11): 2084-2089, 2021.
Article in English | MEDLINE | ID: covidwho-1626439

ABSTRACT

Molecular modeling tools were applied to design a potential covalent inhibitor of the main protease (Mpro) of the SARS-CoV-2 virus and to investigate its interaction with the enzyme. The compound includes a benzoisothiazolone (BZT) moiety of antimalarial drugs and a 5-fluoro-6-nitropyrimidine-2,4(1.H,3H)-dione (FNP) moiety mimicking motifs of inhibitors of other cysteine proteases. The BZT moiety provides a fair binding of the ligand on the protein surface, whereas the warhead FNP is responsible for efficient nucleophilic aromatic substitution reaction with the catalytic cysteine residue in the Mpro active site, leading to a stable covalent adduct. According to supercomputer calculations of the reaction energy profile using the quantum mechanics/molecular mechanics method, the energy of the covalent adduct is 21 kcal mol-1 below the energy of the reactants, while the highest barrier along the reaction pathway is 9 kcal mol-1. These estimates indicate that the reaction can proceed efficiently and can block the Mpro enzyme. The computed structures along the reaction path illustrate the nucleophilic aromatic substitution (SNAr) mechanism in enzymes. The results of this study are important for the choice of potential drugs blocking the development of coronavirus infection.

SELECTION OF CITATIONS
SEARCH DETAIL